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Motivation. Managing access control in Alice’s smart house

• Web-API for the things in Alice’s house.

• Alice gives full access to things to her
house-group containing Bob, and others.

• Alice grants EuroCave engineer access to
a maintenance service.

• To insure his wine, bob installs an extra
temperature/humidity sensor in EuroCave;
grants access to insurance company.

• Insurance company outsources all wine
monitoring to wine analytics company.

• Wine analytics company delegates access
to Data Scientist.

Alice’s house

EuroCave

sensor

https://alice.com/cmd?

..
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Centralised versus decentralised authorisation

Reference
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Policy
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cmd?...

A
view.s
⇒ B

Alice authorises Bob
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Authorization Certificates

Permissions (PERM ,⊑,⊓)
Partially ordered set; X ⊑Y means permission Y provides no less authorization than X and
X ⊓Y is greatest lower bound of X ,Y . For example, SPKI:

(tag (http alice.com/view?s)) ⊑ (tag (http ( * prefix alice.com/)))

Delegation Statement

P
X
=⇒Q means that principal P delegates permission X ∈PERM to principal Q.

{|P ,X ,D ,V |}sK

K
X
=⇒P

P
Y
=⇒Q;X ⊑Y

P
X
=⇒Q

P
X
=⇒Q;Q

Y
=⇒R ;

P
X⊓Y
=⇒ R

D is delegation bit, and V lifetime: we ignore these in this presentation.
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Naming principals

Principals as public keys
Using public keys to identify principals is awkward.

view .s
=⇒

SDSI: use local name (P N) to identify principal named as N in the namespace of principal P .

Speaks for statement
P →Q means that principal Q speaks for principal P .

{|N ,P ,V |}sK

(K N)→P

P → (Q N);Q →R

P → (R N)

P
X
=⇒Q;Q →R

P
X
=⇒R
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Delegation Example

• Alice permits members in her group to
access any device in her house

KA
⊤
=⇒ (KA mbrs); view.s ⊑⊤

• Bob and Clare are members

(KA mbrs) → (KA Bob);

(KA Bob) → (KCA Robert);

(KCA Robert) → (KB);

(KA mbrs) → KC ;

KA/Alice’s namespace

Name Principal

mbrs (KA Bob)
mbrs KC
Bob (KCA Robert)

KCA namespace

Name Principal

Robert KB
· · · · · ·
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Delegation Example

• Alice permits members in her group to
access any device in her house

KA
⊤
=⇒ (KA mbrs); view.s ⊑⊤

• Bob and Clare are members

(KA mbrs) → (KA Bob);

(KA Bob) → (KCA Robert);

(KCA Robert) → (KB);

(KA mbrs) → KC ;

• Bob delegates access to wine sensor s to
insurance company Ivan.

KB
view.s
=⇒ (KCA GFIA Ivan)

• Insurance company (KI ) fully trusts wine
analytics company W ,

KI
view.∗
=⇒ KW

• grants authority to Data Scientist Steve

KW
view.∗
=⇒ (KW Steve)
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Delegation Example

• Alice permits members in her group to
access any device in her house

KA
⊤
=⇒ (KA mbrs); view.s ⊑⊤

• Bob and Clare are members

(KA mbrs) → (KA Bob);

(KA Bob) → (KCA Robert);

(KCA Robert) → (KB);

(KA mbrs) → KC ;

• Bob delegates access to wine sensor s to
insurance company Ivan.

KB
view.s
=⇒ (KCA GFIA Ivan)

• Insurance company (KI ) fully trusts wine
analytics company W ,

KI
view.∗
=⇒ KW

• grants authority to Data Scientist Steve

KW
view.∗
=⇒ (KW Steve)

Steve requests access; Alice deduces:

KA
view.s
=⇒ (KW Steve)
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Subterfuge in Delegation Certificates

• Clare lives at Dishonest Dave’s house

KD
⊤
=⇒ (KD mbrs); (KD mbrs)→KC

• Clare is also an occasional guest at Alice’s
house, but Dave intercepts and conceals
membership (KA mbrs)→KC from Clare.

• Clare grows plants, overseen by Evil Eve:

KC
view.s
=⇒ KE

• Eve can access Alice’s sensor s.

KD
view.s
=⇒ KE ; KA

view.s
=⇒ KE

Dave’s glasshouse

sensor

https://dave.com/cmd?.
.
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Subterfuge in Delegation Certificates

• Clare lives at Dishonest Dave’s house

KD
⊤
=⇒ (KD mbrs); (KD mbrs)→KC

• Clare is also an occasional guest at Alice’s
house, but Dave intercepts and conceals
membership (KA mbrs)→KC from Clare.

• Clare grows plants, overseen by Evil Eve:

KC
view.s
=⇒ KE

• Eve can access Alice’s sensor s.

KD
view.s
=⇒ KE ; KA

view.s
=⇒ KE

• A
hoodwinked
confused deputy problem.

Dave’s glasshouse

sensor

https://dave.com/cmd?.
.
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Subterfuge Intuition

Local delegation state: certificates seen by a principal
For example, Clare’s current delegation state u:

[KD
view.s
=⇒u KC ;KC

view.s
=⇒u KE ;KD

view.s
=⇒u KE ]

Delegation state equivalence u ≈P t

P as sure of being in state u as being in state t. For example,

[KD
view.s
=⇒u KC ;KC

view.s
=⇒u KE ]≈KC

[KA
view.s
=⇒u KC ;KC

view.s
=⇒u KE ]

Avoiding Subterfuge
Every delegation state t, equivalent to a state s reachable by Clare, upholds Alice’s policy.

∀u •∀t •policy(u)∧u ≈KC
t ⇒ policy(t)
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Avoiding Subterfuge
Globally distinct permissions?

Delegate a permission URI

KA

http://www.alice.com/view?s
=⇒ (KA mbrs)
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Avoiding Subterfuge
Globally distinct permissions?

Delegate a permission URI

KA

http://www.alice.com/view?s
=⇒ (KA mbrs)

Who decides the name?

• Register assignments with IANA/ICANN?

• Global security authority?
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Avoiding Subterfuge
Globally distinct permissions?

Delegate a permission URI

KA

http://www.alice.com/view?s
=⇒ (KA mbrs)

Who decides the name?

• Register assignments with IANA/ICANN?

• Global security authority?

Dave can still forge the permission (signed or otherwise)

KD

http://www.alice.com/view?s
=⇒ (KD mbrs)
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Avoiding Subterfuge
Globally distinct permissions?

Alice is owner/originator of her permissions

• Holds a CA domain certificate for alice.com

• Prior to delegation to Insurer, Clare uses Alice’s domain certificate to confirm that Alice
as owner of KA is originator of permission alice.com/view.*

KA

alice.com/view.∗

=⇒ KC ; (Kca alice.com)→KA

Who really owns the domain certificate?

• Requires reasoning outside of Authorization Model

• Why should one have to trust some global security authority?
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Local Permissions

A global/super security authority should not be have to be a requirement

• Services/devices decide local permission names

• A service may relate its local permissions to local permissions of other services

• Principals can delegate local permissions,

• and avoid subterfuge.
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Local Permission Certificates

Signed permissions {view .s}sA

Globally unique permission identifiers tied to
their originator (these could be based on W3C
Decentralized Identifiers).

Delegation reduction to permission
originator only
Avoid ambiguity about origin of delegated
authority.

P
{x}sP
=⇒ Q;Q

{y }sP
=⇒ R ;

P
{x⊓y }sP
=⇒ R

Local Permission Names
Identifying signed permissions is awkward.

(KA Clare)
:view .s

=⇒ (KA Insurer)

Use local permission name 〈P N〉 to identify
permission named as N in the namespace of
principal P .

(KA Clare)
〈KA view.s〉

=⇒ (KA Insurer)

with 20+ inference rules ...
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Alice’s house using local permissions

• Alice permits members in her group to
access any device in her house

KA

〈KA ⊤〉
=⇒ (KA mbrs);

Alice asserts that ⊤ is top permission:

〈KA view .∗〉❀ 〈KA ⊤〉

• Bob and Clare are members

(KA mbrs) → (KA Bob);

(KA Bob) → (KB);

(KA mbrs) → KC ;

• Bob delegates access to wine sensor s to
insurance company Ivan.

KB

〈KA view.s〉
=⇒ (KCA GFIA Ivan)

assuming Alice trusts GIFA views:

〈KA view .∗〉❀ 〈KCA GFIA view .∗〉

• Insurance company (KI ) fully trusts wine
analytics company W ,

KI

〈KCA GFIA view.∗〉
=⇒ KW ;

• grants authority to Data Scientist Steve

KW

〈KCA GFIA view.∗〉
=⇒ (KW Steve)
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Access control decisions in practice

• Public key infrastructure to manage
cryptographic credentials.

• Credential validation requires public key
operations.

• Access decisions computationally OK.

• Feasible in cloud, or at Alice’s perimeter.

Alice’s house

EuroCave

sensor

https://alice.com/cmd?

..
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Access control decisions in practice

• Public key infrastructure to manage
cryptographic credentials.

• Credential validation requires public key
operations.

• Access decisions computationally OK.

• Feasible in cloud, or at Alice’s perimeter.

• What if off-line, or we want IoT device to
manage authorisation decisions/delegate?

• Want public key-free Access Control.
Alice’s house

EuroCave

sensor

https://alice.com/cmd?

..
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Lightweight Trust Management

Permission Ordering (Perm,⊑)

⊤

view.∗

updateview.tview.r

e

⊥
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Lightweight Trust Management

Permission Ordering (Perm,⊑)

⊤

view.∗

updateview.tview.r

e

⊥

Isomorphism: ⌈p⌉ = {q :PERM |p ⊑ q}

{⊤}

{v ,⊤}

{u,⊤}{t,v ,⊤}{r ,v ,⊤}

{e,t,r ,v ,⊤}

{⊥,e,t,r ,v ,u,⊤}
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Lightweight Trust Management

Permission Ordering (Perm,⊑)

⊤

view.∗

updateview.tview.r

e

⊥

Permissions in a Bloom filter B(⌈p⌉)

B({⊤})

B({v ,⊤})

B({u,⊤})B({t,v ,⊤})B({r ,v ,⊤})

B({e,t,r ,v ,⊤})

B({⊥,e,t,r ,v ,u,⊤})
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Lightweight Trust Management

Properties of Bloom Filters

• Can check permission ordering

x ⊑ y ≈B(⌈y⌉)⊆B(⌈x⌉)

• Compute permission intersection

x ⊓y ≈B(⌈x⌉)∪B(⌈y⌉)

with high probability assuming good Bloom
filter configuration. Cannot with reasonable
probability compute permission union

x ⊔y 6≈B(⌈x⌉)∩B(⌈y⌉)

or given permission x , compute dominating
permission y ❂ x , without knowing ⊤.

Permissions in a Bloom filter B(⌈p⌉)

B(⌈⊤⌉)

B(⌈view.∗⌉)

B(⌈update⌉)B(⌈view.t⌉)B(⌈view.r⌉)

B(⌈e⌉)

B(⌈⊥⌉)
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Using Bloom Permissions as access tokens

Access tokens can be delegated
Delegator holds permission B(⌈y⌉), grants:

X =B(⌈y⌉)⊔B(⌈x⌉\ {⊤})

to recipient to delegate permission x ⊑ y , since

x ≤ y ⇒B(⌈x⌉)=B(⌈y⌉)⊔B(⌈x⌉\ {⊤})

Access token check
If permission x is required to engage action and
bit vector Y is presented, check:

B(⌈y⌉)⊔B(⌈x⌉\ {⊤})

[Could use a lightweight based authentication
protocol to prove possession of access token.]

Example

• Device has random secret seed ⊤.

• On first connection, gives B(⌈⊤⌉) to its
owner (resurrecting duckling).

• Owner, gives B(⌈view.∗⌉) to Bob, who
computes/gives

B(⌈view.∗⌉)⊔B(⌈view.t⌉\ {⊤})

to Clare, who presents it as an access
token when requesting device access.
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Using Bloom Permissions as access tokens

Access tokens can be delegated
Delegator holds permission B(⌈y⌉), grants:

X =B(⌈y⌉)⊔B(⌈x⌉\ {⊤})

to recipient to delegate permission x ⊑ y , since

x ≤ y ⇒B(⌈x⌉)=B(⌈y⌉)⊔B(⌈x⌉\ {⊤})

Access token check
If permission x is required to engage action and
bit vector Y is presented, check:

B(⌈y⌉)⊔B(⌈x⌉\ {⊤})

[Could use a lightweight based authentication
protocol to prove possession of access token.]

Example

• Device has random secret seed ⊤.

• On first connection, gives B(⌈⊤⌉) to its
owner (resurrecting duckling).

• Owner, gives B(⌈view.∗⌉) to Bob, who
computes/gives

B(⌈view.∗⌉)⊔B(⌈view.t⌉\ {⊤})

to Clare, who presents it as an access
token when requesting device access.

Implemented in HTTP/embedded web server
with tokens as cookies. Use Bearer tokens &
OAuth, or something else instead?
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Related Work
Subterfuge

Trust Management/Decentralized Authorization
Global unsigned permission namespace with conventional reduction: X509 (X500 names),
KeyNote (IANA names), RT (Application Domain Specification Documents), ...

Distributed Authorization Language [Zhou2006]
RT-style authorization logic, binds keys to permissions and restricted to originator reduction;
subterfuge-freedom conjectured.

Local Permissions [Foley2011]
SPKI/SDSI with SDSI-like local naming scheme for permissions. 20+ deduction rules;
subterfuge-freedom conjectured.

Blessings [Abadi 2015]
Uses SDSI to build CCN style permission naming (blessings) for IoT devices. Relies on widely
witnessed global security authorities/CAs to provide root names.
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Conclusion

Decentralised authorisation for IoT

• Public access credentials.

• Support a web of trust.

• Distributed, no global security authority.

• Revocation can be tricky.

• Public key operations expensive.

Lightweight Trust Management

• Secret access credentials.

• Based on cryptographic hash functions.

• Rely on probabilisitic data structures:
useful for non security critical scenarios.

• Complement PK-based scheme, providing
security-assurance between devices.
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