
Decentralized Access Controls

Simon Foley

IMT Atlantique

March 16, 2018

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Motivation. Managing access control in Alice’s smart house

• Web-API for the things in Alice’s house.

• Alice gives full access to things to her
house-group containing Bob, and others.

• Alice grants EuroCave engineer access to
a maintenance service.

• To insure his wine, bob installs an extra
temperature/humidity sensor in EuroCave;
grants access to insurance company.

• Insurance company outsources all wine
monitoring to wine analytics company.

• Wine analytics company delegates access
to Data Scientist.

Alice’s house

EuroCave

sensor

https://alice.com/cmd?

..

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Centralised versus decentralised authorisation

Reference

Monitor

Policy

resource
cmd?...

A
view.s
⇒ B

Alice authorises Bob

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Centralised versus decentralised authorisation

Reference

Monitor

Policy

resource
cmd?...

A
⊤
⇒B

A
view.s

⇒ Insurance

A
view.s

⇒ WineAnalytics

A
view.s

⇒ DataScientist

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Centralised versus decentralised authorisation

Reference

Monitor

Policy

resource
cmd?...

A
⊤
⇒B

A
view.s

⇒ Insurance

A
view.s

⇒ WineAnalytics

A
view.s

⇒ DataScientist

Reference
Monitor

Policy

resource
cmd?...

A
⊤
⇒B

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Centralised versus decentralised authorisation

Reference

Monitor

Policy

resource
cmd?...

A
⊤
⇒B

A
view.s

⇒ Insurance

A
view.s

⇒ WineAnalytics

A
view.s

⇒ DataScientist

Reference
Monitor

Policy

resource
cmd?...

A
⊤
⇒B

B
view.s

⇒ I

I
view.s

⇒ W

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Outline of Talk

Motivation

Authorization Certificates

Subterfuge

Local Permissions

Lightweight Permissions

Conclusion

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Authorization Certificates

Permissions (PERM ,⊑,⊓)
Partially ordered set; X ⊑Y means permission Y provides no less authorization than X and
X ⊓Y is greatest lower bound of X ,Y . For example, SPKI:

(tag (http alice.com/view?s)) ⊑ (tag (http (* prefix alice.com/)))

Delegation Statement

P
X
=⇒Q means that principal P delegates permission X ∈PERM to principal Q.

{|P ,X ,D ,V |}sK

K
X
=⇒P

P
Y
=⇒Q;X ⊑Y

P
X
=⇒Q

P
X
=⇒Q;Q

Y
=⇒R ;

P
X⊓Y
=⇒ R

D is delegation bit, and V lifetime: we ignore these in this presentation.

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Naming principals

Principals as public keys
Using public keys to identify principals is awkward.

view .s
=⇒

SDSI: use local name (P N) to identify principal named as N in the namespace of principal P .

Speaks for statement
P →Q means that principal Q speaks for principal P .

{|N ,P ,V |}sK

(K N)→P

P → (Q N);Q →R

P → (R N)

P
X
=⇒Q;Q →R

P
X
=⇒R

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Delegation Example

• Alice permits members in her group to
access any device in her house

KA
⊤
=⇒ (KA mbrs); view.s ⊑⊤

• Bob and Clare are members

(KA mbrs) → (KA Bob);

(KA Bob) → (KCA Robert);

(KCA Robert) → (KB);

(KA mbrs) → KC ;

KA/Alice’s namespace

Name Principal

mbrs (KA Bob)
mbrs KC
Bob (KCA Robert)

KCA namespace

Name Principal

Robert KB
· · · · · ·

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Delegation Example

• Alice permits members in her group to
access any device in her house

KA
⊤
=⇒ (KA mbrs); view.s ⊑⊤

• Bob and Clare are members

(KA mbrs) → (KA Bob);

(KA Bob) → (KCA Robert);

(KCA Robert) → (KB);

(KA mbrs) → KC ;

• Bob delegates access to wine sensor s to
insurance company Ivan.

KB
view.s
=⇒ (KCA GFIA Ivan)

• Insurance company (KI) fully trusts wine
analytics company W ,

KI
view.∗
=⇒ KW

• grants authority to Data Scientist Steve

KW
view.∗
=⇒ (KW Steve)

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Delegation Example

• Alice permits members in her group to
access any device in her house

KA
⊤
=⇒ (KA mbrs); view.s ⊑⊤

• Bob and Clare are members

(KA mbrs) → (KA Bob);

(KA Bob) → (KCA Robert);

(KCA Robert) → (KB);

(KA mbrs) → KC ;

• Bob delegates access to wine sensor s to
insurance company Ivan.

KB
view.s
=⇒ (KCA GFIA Ivan)

• Insurance company (KI) fully trusts wine
analytics company W ,

KI
view.∗
=⇒ KW

• grants authority to Data Scientist Steve

KW
view.∗
=⇒ (KW Steve)

Steve requests access; Alice deduces:

KA
view.s
=⇒ (KW Steve)

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Subterfuge in Delegation Certificates

• Clare lives at Dishonest Dave’s house

KD
⊤
=⇒ (KD mbrs); (KD mbrs)→KC

• Clare is also an occasional guest at Alice’s
house, but Dave intercepts and conceals
membership (KA mbrs)→KC from Clare.

• Clare grows plants, overseen by Evil Eve:

KC
view.s
=⇒ KE

• Eve can access Alice’s sensor s.

KD
view.s
=⇒ KE ; KA

view.s
=⇒ KE

Dave’s glasshouse

sensor

https://dave.com/cmd?.
.

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Subterfuge in Delegation Certificates

• Clare lives at Dishonest Dave’s house

KD
⊤
=⇒ (KD mbrs); (KD mbrs)→KC

• Clare is also an occasional guest at Alice’s
house, but Dave intercepts and conceals
membership (KA mbrs)→KC from Clare.

• Clare grows plants, overseen by Evil Eve:

KC
view.s
=⇒ KE

• Eve can access Alice’s sensor s.

KD
view.s
=⇒ KE ; KA

view.s
=⇒ KE

• A
hoodwinked
confused deputy problem.

Dave’s glasshouse

sensor

https://dave.com/cmd?.
.

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Subterfuge Intuition

Local delegation state: certificates seen by a principal
For example, Clare’s current delegation state u:

[KD
view.s
=⇒u KC ;KC

view.s
=⇒u KE ;KD

view.s
=⇒u KE]

Delegation state equivalence u ≈P t

P as sure of being in state u as being in state t. For example,

[KD
view.s
=⇒u KC ;KC

view.s
=⇒u KE]≈KC

[KA
view.s
=⇒u KC ;KC

view.s
=⇒u KE]

Avoiding Subterfuge
Every delegation state t, equivalent to a state s reachable by Clare, upholds Alice’s policy.

∀u •∀t •policy(u)∧u ≈KC
t ⇒ policy(t)

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Avoiding Subterfuge
Globally distinct permissions?

Delegate a permission URI

KA

http://www.alice.com/view?s
=⇒ (KA mbrs)

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Avoiding Subterfuge
Globally distinct permissions?

Delegate a permission URI

KA

http://www.alice.com/view?s
=⇒ (KA mbrs)

Who decides the name?

• Register assignments with IANA/ICANN?

• Global security authority?

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Avoiding Subterfuge
Globally distinct permissions?

Delegate a permission URI

KA

http://www.alice.com/view?s
=⇒ (KA mbrs)

Who decides the name?

• Register assignments with IANA/ICANN?

• Global security authority?

Dave can still forge the permission (signed or otherwise)

KD

http://www.alice.com/view?s
=⇒ (KD mbrs)

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Avoiding Subterfuge
Globally distinct permissions?

Alice is owner/originator of her permissions

• Holds a CA domain certificate for alice.com

• Prior to delegation to Insurer, Clare uses Alice’s domain certificate to confirm that Alice
as owner of KA is originator of permission alice.com/view.*

KA

alice.com/view.∗

=⇒ KC ; (Kca alice.com)→KA

Who really owns the domain certificate?

• Requires reasoning outside of Authorization Model

• Why should one have to trust some global security authority?

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Avoiding Subterfuge
Globally distinct permissions?

Alice is owner/originator of her permissions

• Holds a CA domain certificate for alice.com

• Prior to delegation to Insurer, Clare uses Alice’s domain certificate to confirm that Alice
as owner of KA is originator of permission alice.com/view.*

KA

alice.com/view.∗

=⇒ KC ; (Kca alice.com)→KA

Who really owns the domain certificate?

• Requires reasoning outside of Authorization Model

• Why should one have to trust some global security authority?

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Avoiding Subterfuge
Globally distinct permissions?

Alice is owner/originator of her permissions

• Holds a CA domain certificate for alice.com

• Prior to delegation to Insurer, Clare uses Alice’s domain certificate to confirm that Alice
as owner of KA is originator of permission alice.com/view.*

KA

alice.com/view.∗

=⇒ KC ; (Kca alice.com)→KA

Who really owns the domain certificate?

• Requires reasoning outside of Authorization Model

• Why should one have to trust some global security authority?

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Avoiding Subterfuge
Globally distinct permissions?

Alice is owner/originator of her permissions

• Holds a CA domain certificate for alice.com

• Prior to delegation to Insurer, Clare uses Alice’s domain certificate to confirm that Alice
as owner of KA is originator of permission alice.com/view.*

KA

alice.com/view.∗

=⇒ KC ; (Kca alice.com)→KA

Who really owns the domain certificate?

• Requires reasoning outside of Authorization Model

• Why should one have to trust some global security authority?

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Local Permissions

A global/super security authority should not be have to be a requirement

• Services/devices decide local permission names

• A service may relate its local permissions to local permissions of other services

• Principals can delegate local permissions,

• and avoid subterfuge.

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Local Permission Certificates

Signed permissions {view .s}sA

Globally unique permission identifiers tied to
their originator (these could be based on W3C
Decentralized Identifiers).

Delegation reduction to permission
originator only
Avoid ambiguity about origin of delegated
authority.

P
{x}sP
=⇒ Q;Q

{y }sP
=⇒ R ;

P
{x⊓y }sP
=⇒ R

Local Permission Names
Identifying signed permissions is awkward.

(KA Clare)
:view .s

=⇒ (KA Insurer)

Use local permission name 〈P N〉 to identify
permission named as N in the namespace of
principal P .

(KA Clare)
〈KA view.s〉

=⇒ (KA Insurer)

with 20+ inference rules ...

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Alice’s house using local permissions

• Alice permits members in her group to
access any device in her house

KA

〈KA ⊤〉
=⇒ (KA mbrs);

Alice asserts that ⊤ is top permission:

〈KA view .∗〉❀ 〈KA ⊤〉

• Bob and Clare are members

(KA mbrs) → (KA Bob);

(KA Bob) → (KB);

(KA mbrs) → KC ;

• Bob delegates access to wine sensor s to
insurance company Ivan.

KB

〈KA view.s〉
=⇒ (KCA GFIA Ivan)

assuming Alice trusts GIFA views:

〈KA view .∗〉❀ 〈KCA GFIA view .∗〉

• Insurance company (KI) fully trusts wine
analytics company W ,

KI

〈KCA GFIA view.∗〉
=⇒ KW ;

• grants authority to Data Scientist Steve

KW

〈KCA GFIA view.∗〉
=⇒ (KW Steve)

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Access control decisions in practice

• Public key infrastructure to manage
cryptographic credentials.

• Credential validation requires public key
operations.

• Access decisions computationally OK.

• Feasible in cloud, or at Alice’s perimeter.

Alice’s house

EuroCave

sensor

https://alice.com/cmd?

..

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Access control decisions in practice

• Public key infrastructure to manage
cryptographic credentials.

• Credential validation requires public key
operations.

• Access decisions computationally OK.

• Feasible in cloud, or at Alice’s perimeter.

• What if off-line, or we want IoT device to
manage authorisation decisions/delegate?

Alice’s house

EuroCave

sensor

https://alice.com/cmd?

..

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Access control decisions in practice

• Public key infrastructure to manage
cryptographic credentials.

• Credential validation requires public key
operations.

• Access decisions computationally OK.

• Feasible in cloud, or at Alice’s perimeter.

• What if off-line, or we want IoT device to
manage authorisation decisions/delegate?

• Want public key-free Access Control.
Alice’s house

EuroCave

sensor

https://alice.com/cmd?

..

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Lightweight Trust Management

Permission Ordering (Perm,⊑)

⊤

view.∗

updateview.tview.r

e

⊥

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Lightweight Trust Management

Permission Ordering (Perm,⊑)

⊤

view.∗

updateview.tview.r

e

⊥

Isomorphism: ⌈p⌉ = {q :PERM |p ⊑ q}

{⊤}

{v ,⊤}

{u,⊤}{t,v ,⊤}{r ,v ,⊤}

{e,t,r ,v ,⊤}

{⊥,e,t,r ,v ,u,⊤}

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Lightweight Trust Management

Permission Ordering (Perm,⊑)

⊤

view.∗

updateview.tview.r

e

⊥

Permissions in a Bloom filter B(⌈p⌉)

B({⊤})

B({v ,⊤})

B({u,⊤})B({t,v ,⊤})B({r ,v ,⊤})

B({e,t,r ,v ,⊤})

B({⊥,e,t,r ,v ,u,⊤})

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Lightweight Trust Management

Properties of Bloom Filters

• Can check permission ordering

x ⊑ y ≈B(⌈y⌉)⊆B(⌈x⌉)

• Compute permission intersection

x ⊓y ≈B(⌈x⌉)∪B(⌈y⌉)

with high probability assuming good Bloom
filter configuration. Cannot with reasonable
probability compute permission union

x ⊔y 6≈B(⌈x⌉)∩B(⌈y⌉)

or given permission x , compute dominating
permission y ❂ x , without knowing ⊤.

Permissions in a Bloom filter B(⌈p⌉)

B(⌈⊤⌉)

B(⌈view.∗⌉)

B(⌈update⌉)B(⌈view.t⌉)B(⌈view.r⌉)

B(⌈e⌉)

B(⌈⊥⌉)

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Using Bloom Permissions as access tokens

Access tokens can be delegated
Delegator holds permission B(⌈y⌉), grants:

X =B(⌈y⌉)⊔B(⌈x⌉\ {⊤})

to recipient to delegate permission x ⊑ y , since

x ≤ y ⇒B(⌈x⌉)=B(⌈y⌉)⊔B(⌈x⌉\ {⊤})

Access token check
If permission x is required to engage action and
bit vector Y is presented, check:

B(⌈y⌉)⊔B(⌈x⌉\ {⊤})

[Could use a lightweight based authentication
protocol to prove possession of access token.]

Example

• Device has random secret seed ⊤.

• On first connection, gives B(⌈⊤⌉) to its
owner (resurrecting duckling).

• Owner, gives B(⌈view.∗⌉) to Bob, who
computes/gives

B(⌈view.∗⌉)⊔B(⌈view.t⌉\ {⊤})

to Clare, who presents it as an access
token when requesting device access.

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Using Bloom Permissions as access tokens

Access tokens can be delegated
Delegator holds permission B(⌈y⌉), grants:

X =B(⌈y⌉)⊔B(⌈x⌉\ {⊤})

to recipient to delegate permission x ⊑ y , since

x ≤ y ⇒B(⌈x⌉)=B(⌈y⌉)⊔B(⌈x⌉\ {⊤})

Access token check
If permission x is required to engage action and
bit vector Y is presented, check:

B(⌈y⌉)⊔B(⌈x⌉\ {⊤})

[Could use a lightweight based authentication
protocol to prove possession of access token.]

Example

• Device has random secret seed ⊤.

• On first connection, gives B(⌈⊤⌉) to its
owner (resurrecting duckling).

• Owner, gives B(⌈view.∗⌉) to Bob, who
computes/gives

B(⌈view.∗⌉)⊔B(⌈view.t⌉\ {⊤})

to Clare, who presents it as an access
token when requesting device access.

Implemented in HTTP/embedded web server
with tokens as cookies. Use Bearer tokens &
OAuth, or something else instead?

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Related Work
Subterfuge

Trust Management/Decentralized Authorization
Global unsigned permission namespace with conventional reduction: X509 (X500 names),
KeyNote (IANA names), RT (Application Domain Specification Documents), ...

Distributed Authorization Language [Zhou2006]
RT-style authorization logic, binds keys to permissions and restricted to originator reduction;
subterfuge-freedom conjectured.

Local Permissions [Foley2011]
SPKI/SDSI with SDSI-like local naming scheme for permissions. 20+ deduction rules;
subterfuge-freedom conjectured.

Blessings [Abadi 2015]
Uses SDSI to build CCN style permission naming (blessings) for IoT devices. Relies on widely
witnessed global security authorities/CAs to provide root names.

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

Conclusion

Decentralised authorisation for IoT

• Public access credentials.

• Support a web of trust.

• Distributed, no global security authority.

• Revocation can be tricky.

• Public key operations expensive.

Lightweight Trust Management

• Secret access credentials.

• Based on cryptographic hash functions.

• Rely on probabilisitic data structures:
useful for non security critical scenarios.

• Complement PK-based scheme, providing
security-assurance between devices.

Motivation Authorization Certificates Subterfuge Local Permissions Lightweight Permissions Conclusion

More information

1. Foley, S. N. (2014). Noninterference Analysis of Delegation Subterfuge in Distributed

Authorization Systems. Journal of Trust Management, 1(11).

2. Foley, S. N., Navarro-Arribas, G. (2013). A Bloom Filter Based Model for Decentralized

Authorization. Int. J. Intell. Syst., 28(6).

3. Foley, S. N., Abdi, S. (2011). Avoiding Delegation Subterfuge Using Linked Local

Permission Names. Formal Aspects of Security and Trust, 2011.

4. Zhou, H., Foley, S. N. (2006). A Framework for Establishing Decentralized Secure
Coalitions. In 19th IEEE Computer Security Foundations Workshop, (CSFW-19 2006),
2006.

5. Foley, S. N., Zhou, H. (2005). Authorisation Subterfuge by Delegation in Decentralised

Networks. In Security Protocols Workshop, 2005

	Motivation
	Authorization Certificates
	Subterfuge
	Local Permissions
	Lightweight Permissions
	Conclusion

