Chair of Network Architectures and Services Department of Informatics Technical University of Munich

Secure Multiparty Computation in the Internet of Things

Marcel von Maltitz vonmaltitz@net.in.tum.de http://www.net.in.tum.de/members/maltitz

Focus: Smart Building / Smart Homes / Smart Offices

A Siemens building management system in Vienna, which can access some 10,000 sensors, provides extremely energy-efficient lighting, as well as temperature and ventilation optimization.

Focus: Smart Building / Smart Homes / Smart Offices

HVAC Lighting Elevators Power Consumption Presence Detection Environment Sensing Fire Safety Guidance Systems Energy Management

Data providers

		L
		L
		L
		L
		L
		L
		L
		L

© General Electrics: Predix Platform

ПШ

Problems

Security

- Collection of raw data
- History of previously collected data
- \rightarrow Single point of attack, High value target

Privacy / Data Protection

- Personally identifiable/relatable information
- Collection and usage intransparent
- Lost of control
- Observation / Tracking / Surveillance
- \rightarrow Threats to privacy
- \rightarrow User acceptance?
- \rightarrow Legal conformity?

ПШ

ТΠ

There are n parties $P_1, ..., P_n$. Each party P_i holds a secret value x_i . Secure Computation of $y = f(x_1, ..., x_n)$ is performed if two conditions are satisfied:

- Correctness: the correct value of *y* is computed
- Privacy: y is the only new information that is released

Example: Addition

Party	x _i	Share P ₁	Share P_2	Share P_3
P ₁	10	3	2	5
P ₂	5	1	2	2
P ₃	7	4	1	2
Result	22	8	5	9

Benefits

Confidentiality

- Raw input data only on collecting device
- Unlinkability
 - Results give no insights in input data
 - Illegitimate combination of information from same device harder

Transparency

- Purpose of computation known due to participation
- Trustworthy accountability by individual parties

Intervenability

• Parties can refrain from participation \rightarrow Veto-Mechanism

Challenges

Dynamic Environment

- Parties previously unknown
- Subsets of Parties
- Different input data
- Computations previously unknown

Orchestration of Computations

- Synchronized communication
- No error handling
- Only parties obtain result

Service character

- Access for data consumers
- Metadata about available information
- Access control

Approach: Self-organizing Parties

verification

responsibility

von Maltitz, M., Smarzly, S., Kinkelin, H., & Carle, G. (2018). A Management Framework for Secure Multiparty Computation in Dynamic Environments. To appear in Proceedings of NOMS 2018 -- IEEE/IFIP DOMINOS Workshop. Taipei, Taiwan.

Secure Multiparty Computation in the Internet of Things

- Promising approach
- Solves/mitigates several security and privacy problems in systems handling sensor data
- Challenges emerge from mismatch between SMC premises and properties of dynamic environments
- Convergence possible

Questions?

