

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

BLACKLISTING IN IEEE 802.15.4 NETWORKS

Georgios Z. **PAPADOPOULOS** e-mail: georgios.papadopoulos@imt-atlantique.fr web: www.georgiospapadopoulos.com twitter: @gzpapadopoulos

CONTEXT

6TISCH STACK

Inspired from the slides of Pascal Thubert, "RPL 2017"

IEEE802.15.4 TSCH

IEEE STANDARDS ASSOCIATION

♦IEEE

Prime characteristics

- Based on IEEE 802.15.4
- TSCH: Time-Slotted (synchronized), to allow for distributed implementation
- TSCH: Channel Hopping, to give resilience to interference and multi-path fading

IEEE Standard for Low-Rate Wireless Personal Area Networks (WPANs)

IEEE Computer Society

Sponsored by the LAN/MAN Standards Committee

IEEE 3 Park Avenue New York, NY 10016-5997 USA

IEEE Std 802.15.4™-2015 (Revision of IEEE Std 802.15.4-2011)

Authorized Roeneed use Imited in: TELECOM Bretagne. Downloaded on July 12,2016 at 15:25:55 UTC from EEEE Xplore. Fleetrictions apply

TIMELINE

2006: TSCH approach emerges in the proprietary Time Synchronized Mesh Protocol (TSMP)

> 2008: TSMP is standardized in ISA100.11a

• The IEEE 802.15.4e Working group is created:

Issue: IEEE 802.15.4-2006 MAC is ill-suited for low-power multi-hop network because of

(i) high energy consumption due to relay/router nodes

(ii) use of a single channel that implies interference and multi-path fading

Final aim: to redesign the existing IEEE 802.15.4-2006 MAC Std. and make it suitable for low-power multi-hop networks in industrial applications

- 2009: TSMP is standardized in WirelessHART
- 2010: Part of IEEE 802.15.4e draft
- 2011: IEEE802.15.4e draft in Sponsor Ballot (opened on 27 July 2011 and closed on 28 August with 96% of votes being affirmative)

2012: IEEE802.15.4e TSCH published

> 2016: IEEE802.15.4-2015-TSCH published

Each mote follows a communication schedule

A schedule is a matrix of cells, each of them indexed by a timeslot and a channelOffset

Each cell can be assigned to a pair of nodes, in a given direction

IEEE802.15.4 TIME-SLOTTED CH

Time is divided in *timeslots*

All nodes are synchronized to a given slotframe

- Slotframe: group of time slots which repeats over time
- Number of time slots per slotframe is tunable

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

IEEE 802.15.4 TS CHANNEL HOPPING

The channel offset is translated to a radio channel

 $f = F \{ (\mathbf{ASN} + chOf) \mod n_{ch} \}$

Table I. FrequencyTranslation

k	ASN	chOf	f
0	4	1	5
1	11	1	12
2	18	1	3
3	25	1	10

IEEE 802.15.4 TS CHANNEL HOPPING (2/2)

A node sends subsequent packets on different channels
Interference and multipath fading are mitigated

16 channels are available in the 2.4GHz frequency band (optional *blacklist*)

A single timeslot can be used by multiple pairs of nodes

Network capacity is increased

IS BLACKLISTING RELEVANT?

[1] V. Kotsiou, G. Z. Papadopoulos, P. Chatzimisios, and F. Theoleyre. "Is Local Blacklisting Relevant in Slow Channel Hopping Low-Power Wireless Networks?", IEEE International Conference on Communications (ICC), 2017.

IEEE 802.15.4-2015: BLACKLISTING

Blacklisting

- Detecting bad channels
- Channel Hopping without these bad channels
- Global: certain channels should be globally blacklisted
- Local: a radio channel should not be used by a pair of nodes

Question: Is *local* Blacklisting relevant in Channel Hopping?

Different zones / links / nodes: different blacklisted channels?

EXPERIMENTAL SETUP

Parameter	Value
# of nodes	2
Nodes spacing	0.6 - 17 <i>m</i>
Duration	90 <i>min</i>
# of experiments	200
Application model	1 pkt / 3 sec

FIT IoT-LAB Platform: Grenoble's site

GEOGRAPHIC VARIABILITY

TIME VARIABILITY

RX/TX distance = 9m

CHALLENGE

Challenge: deterministic Channel Hopping

 Different channel offsets → lead to collisions → detection and reconfiguration

COLLISION EXAMPLE 1

	ŀ	A->B		C->D		
	Channel Offset	2		Channel Offset	1	
	Whitelist	1	5	Whitelist	5 7	,
ASN	Radio Channel			Radio Channel		
C) 1			7		
1	5	5		5		Collision
2	2 1			7		
3	5 5	5		5		Collision
4	1			7		
5	5 5	5		5		Collision
6	6 1			7		
7	7 5	5		5		Collision
8	3 1			7		
ç	9 5	5		5		Collision
10) 1			7		
11	5	5		5		Collision
12	2 1			7		
13	5 5	5		5		Collision

F() = good[Offset + ASN mod 2]

Collision in all even timeslots!

LINK-BASED ADAPTIVE BLACKLISTING TECHNIQUE

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom [2] V. Kotsiou, G. Z. Papadopoulos, P. Chatzimisios, and F. Theoleyre, "LABeL: Link-based Adaptive BLacklisting Technique for 6TiSCH Wireless Industrial Networks", ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM), 2017.

Which channel quality metric we use?

- RSSI-LQI are not suitable: calculated for received data packets.
- PDR is the most accurate indicator to detect bad channels.

How to predict the quality of a channel?

 We use Window Mean Exponential Weighted Moving Average (WMEWMA) estimator to smooth the above PDR values

$$PDR_{wmewma}[c] = aPDR_{wmewma}[c] + (1 - \alpha)PDR_{last16}[c]$$

WHICH CRITERION SHOULD BE USED TO DECIDE WHICH CHANNELS TO EXCLUDE FROM THE CHS ?

Fixed Threshold value.

In the case of a low-quality links, all channels maybe blacklisted.

WHICH CRITERION SHOULD BE USED TO DECIDE WHICH CHANNELS TO EXCLUDE FROM THE CHS ?

Adaptive Threshold value.depends on the link quality

- Blacklist Construction
 - Depends on the PDR of the *k*th best radio channel

MODIFYING THE CHANNEL HOPPING SEQUENCE

LookUp Table					
Index	Channel				
0	16				
1	17				
2	23				
3	18				
4	26				
5	15				
6	25				
7	22				
8	19				
9	11				
10	12				
11	13				
12	24				
13	14				
14	20				
15	21				

ASN	chOffset	k	Index	Channel	k = 0	
25	0	0	9	11		
					frq = F((ASN + chOffset + k)%nfreq)	
(/	4 <i>SN</i> + <i>chOf f</i> (25 + 0 + 9 F(9	$F_{set} + k$ - 0)%10	c)%nfreq 6		Yes frq is Good? No $k = k + 1$ Use it	

MODIFYING THE CHANNEL HOPPING SEQUENCE

LookUp Table					
Index	Channel				
0	16				
1	17				
2	23				
3	18				
4	26				
5	15				
6	25				
7	22				
8	19				
9	11				
10	12				
11	13				
12	24				
13	14				
14	20				
15	21				

	Channel	Index	k	chOffset	ASN
	11	9	0	0	25
	17	1	0	0	33
frq = F	23	2	1	0	33
	18	3	2	0	33

PASSIVELY MONITOR THE QUALITY OF BAD CHANNELS

Probe – Control packets.

- Produces unnecessary traffic
- Passively monitor the Quality of Bad Channels.

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

SOME RESULTS

FIT IOT-LAB PLATFORM [STRASBOURG SITE]

Default: all the channels Global Blacklisting: 3 worst channels Local-Fixed: PDR < 90% Local-Adaptive: LABeL: adaptive Blacklist

10 nodes Star topology

RELIABILITY (PDR)

All the blacklisting techniques improve in some extent the PDR

- Global: lowest improvement
- Local: Blacklisting: suboptimal
- LABeL: outperforms all other techniques.

EXPECTED TRANSMISSION COUNT (ETX)

LABeL provides an ETX below 1.1, making on average links more robust (14% less transmissions compared to without backlisting).

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

BLACKLISTING IN IEEE 802.15.4 NETWORKS

Georgios Z. **PAPADOPOULOS** e-mail: georgios.papadopoulos@imt-atlantique.fr web: www.georgiospapadopoulos.com twitter: @gzpapadopoulos