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Abstract—In this work, we study the optimal trajectory of an
unmanned aerial vehicle (UAV) acting as a base station (BS)
to serve multiple users. Considering multiple flying epochs, we
leverage the tools of reinforcement learning (RL) with the UAV
acting as an autonomous agent in the environment to learn the
trajectory that maximizes the sum rate of the transmission during
flying time. By applying Q-learning, a model-free RL technique,
an agent is trained to make movement decisions for the UAV. We
compare table-based and neural network (NN) approximations
of the Q-function and analyze the results. In contrast to previous
works, movement decisions are directly made by the neural
network and the algorithm requires no explicit information about
the environment and is able to learn the topology of the network
to improve the system-wide performance.

I. INTRODUCTION

Compared to traditional mobile network infrastructure,
mounting base stations (BSs) or access points (APs) on
unmanned aerial vehicles (UAVs) promises faster and dynamic
network deployment, the possibility to extend coverage beyond
existing stationary APs and provide additional capacity to
users in localized areas of high demand, such as concerts
and sports events. Fast deployment is especially useful in
scenarios when sudden network failure occurs and delayed
re-establishment not acceptable, e.g. in disaster and search-
and-rescue situations [1]. In remote areas where it is not
feasible or economically efficient to extend permanent network
infrastructure, high-flying balloons or unmanned solar planes
(as in Google’s project Loon and Facebook’s Internet.org
initiative) could provide Internet access to half the world’s
population currently without it.

In all mentioned scenarios where flying APs hold promise,
a decisive factor for the system’s ability to serve the highest
possible number of users with the best achievable Quality
of Service (QoS) is the UAV’s location. Previous work has
either addressed the placement problem of finding optimal
positions for flying APs (e.g. [2], [3]) or optimizing the
UAV’s trajectory from start to end [4]–[7]. Whereas fixed
locations fulfilling a certain communication network’s goal
are determined in the placement problem, the alternative is
to embed the optimization of the communication system with
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Fig. 1. UAV BS optimizing its trajectory to maximize the sum rate of the
transmission to a group of users, e.g. in case of stationary transmitter failure.

the path planning of the UAV base station. This allows for
optimizing the users’ QoS during the whole flying time as well
as combining it with other mission critical objectives such as
energy conservation by reducing flying time (e.g. [2] and [6])
or integrating landing spots for the UAV in the trajectory [4].

In this work and as depicted in figure 1, we consider the
UAV acting as a BS serving multiple users maximizing the
sum of the information rate over the flying time, but a multi-
tude of other applications exist. [8] and [9] provide summaries
of the general challenges and opportunities. In [4], [10] and
[11], the authors investigate an IoT-driven scenario where an
autonomous drone gathers data from distant network nodes.
The authors of [7] and [12] work on an application where an
existing ground-based communications network could be used
for beyond line-of-sight (LOS) control of UAVs if resulting
interference within the ground network is managed. In [2] and
[5], a scenario similar to this work is considered where a UAV-
mounted BS serves a group of users. Whereas the authors in
[5] also maximize the sum rate of the users, the goal in [2] is to
cover the highest possible number of users while minimizing
transmit power.

Recent successes in the application of deep reinforcement
learning to problems of control, perception and planning
achieving superhuman performance, e.g. playing Atari video
games [13], have created interest in many areas, though RL-
based path planning for mobile robots and UAVs in particular
has not been investigated widely. Deep learning applications



in UAV guidance focus often on perception and have mostly
auxiliary functions for the actual path planning, see [14]
for a review. In [3], a radio map is learned which is then
used to find optimal UAV relay positions. In [7] a deep RL
system based on echo state network (ESN) cells is used to
guide cellular-connected UAVs towards a destination while
minimizing interference.

Our work focuses on a different scenario where the UAV
carries a base station and becomes part of the mobile com-
munication infrastructure serving a group of users. Movement
decisions to maximize the sum rate over flying time are made
directly by a reinforcement Q-learning system. Previous works
not employing machine learning often rely on strict models of
the environment or assume the channel state information (CSI)
to be predictable. In contrast, the Q-learning algorithm requires
no explicit information about the environment and is able to
learn the topology of the network to improve the system-wide
performance. We compare a standard table-based approach and
a neural network as Q-function approximators.

II. SYSTEM MODEL

A. UAV Model

The UAV has a maximum flying time T , by the end of which
it is supposed to return to a final position. During the flying
time t ∈ [0, T ], the UAV’s position is given by (x(t), y(t)) and
a constant altitude H . It is moving with a constant velocity V .
The initial position of the UAV is (x0, y0), whereas (xf , yf )
is the final position. x(t) and y(t) are smooth functions of
class C∞ and defined as

x :

(
[0, T ]→ R
t→ x(t)

)
y :

(
[0, T ]→ R
t→ y(t)

)
(1)

subjected to

x(0) = x0, y(0) = y0

x(T ) = xf , y(T ) = yf

The UAV’s constant velocity is enforced over the time
derivatives ẋ(t) and ẏ(t) with√

ẋ2(t) + ẏ2(t) = V, t ∈ [0, T ] (2)

B. Communication Channel Model

The communication channel between the UAV AP and a
number of K users is described by the log-distance path loss
model including small-scale fading and a constant attenuation
factor in the shadow of the obstacle.

The communication link is modeled as an orthogonal point-
to-point channel. The information rate of the k-th user, k ∈
{1, ...,K} located at a constant position (ak, bk) ∈ R2 at
ground level is given by

Rk(t) = log2

(
1 +

P

N
· Lk

)
(3)

with transmit power P , noise power N and pathloss Lk of
the k-th user. The UAV-user distance dk(t) with the UAV at
constant altitude H and all users at ground level is given as

dk(t) =

√
H2 + (x(t)− ak)2 + (y(t)− bk)2 (4)

With the pathloss exponent set to α = 2 for vacuum, the
pathloss for user k is given as

Lk = dk(t)
−α · 10XRayleigh/10 · βshadow (5)

where small-scale fading was modeled as a Rayleigh dis-
tributed random variable XRayleigh with scaling factor σ = 1.
The attenuation through obstacle obstruction was modeled
with a discrete factor βshadow ∈ {1, 0.01} which is set to
βshadow = 0.01 in the obstacle’s shadow and to βshadow = 1
everywhere else. Using the described model, the maximization
problem can be formulated as

max
x(t),y(t)

∫ T

t=0

K∑
k=1

Rk(t)dt (6)

To guarantee that a feasible solution exists, T and V must
be chosen such that the UAV is at least able to travel from
initial to final position along the minimum distance path, i.e.
V T ≥

√
(xf − x0)2 + (yf − y0)2.

III. FUNDAMENTALS OF Q-LEARNING

Q-learning is a model-free reinforcement learning method
firstly proposed by Watkins and developed further in 1992
[15]. It is classified as model-free because it has no internal
representation of the environment.

Reinforcement learning in general proceeds in a cycle of
interactions between an agent and its environment. At time t,
the agent observes a state st ∈ S, performs an action at ∈ A
and subsequently receives a reward rt ∈ R. The time index is
then incremented and the environment propagates the agent to
a new state st+1, from where the cycle restarts.

Q-learning specifically allows an agent to learn to act
optimally in an environment that can be represented by a
Markov decision process (MDP). Consider a finite MDP
〈S,A, P,R, γ〉 with state space S, action space A, state tran-
sition probability Pa(s, s′) = Pr(st+1 = s′ | st = s, at = a),
reward function Ra(s, s′) and discount factor γ ∈ [0, 1) which
controls the importance of future rewards in relation to present
reward.

The goal for the agent is to learn a behavior rule that
maximizes the reward it receives. A behavior rule that tells
it how to select actions given a certain state is referred to as
a policy and can be stochastic in general. It is given as

π(a|s) = Pr [at = a | tt = s] (7)

Q-learning is based on iteratively improving the state-action
value function (or Q-function) which represents an expectation
of the future reward when taking action a in state s and
following policy π from thereon after. The Q-function is

Qπ(s, a) = Eπ{Rt | st = s, at = a} (8)



where the discounted sum of all future rewards at current time
t is called the return Rt ∈ R given by

Rt =

T−1∑
k=0

γkrt+1+k (9)

with discount factor γ ∈ [0, 1) as set in the MDP definition
and reaching the terminal state at time t + T . Given the Q-
function with perfect information Qπ

∗
(s, a), an optimal policy

can be derived by selecting actions greedily:

π∗(a|s) = argmax
a

Qπ
∗
(s, a) (10)

From combining (8) and (9) it follows that Rt can be
approximated in expectation based on the agent’s next step in
the environment. The central Q-learning update rule to make
iterative improvements on the Q-function is therefore given by

Qπ(st, at)← Qπ(st, at)+

α
(
rt + γmax

a
Qπ(st+1, a)−Qπ(st, at)

)
(11)

with learning rate α ∈ [0, 1] determining to what extend
old information is overridden and discount factor γ ∈ [0, 1)
balancing the importance of short-term and long-term reward.
γ approaching 1 will make the agent focus on gaining long-
term reward, whereas choosing γ = 0 will make it consider
only the immediate reward of an action. A value of γ = 1
could lead to action values diverging. Q-learning will converge
to the optimal policy regardless of the exploration strategy
being followed, under the assumption that each state-action
pair is visited an infinite number of times, and the learning
parameter α is decreased appropriately [16].

IV. Q-LEARNING FOR TRAJECTORY OPTIMIZATION

A. Table-based Q-learning

In this section, we describe how the Q-learning algorithm
was adapted for trajectory optimization of a UAV BS inside
a simulated environment with the Q-function being approxi-
mated by a four-dimensional table of Q-values. Each Q-value
represents thereby a unique state-action pair and a higher value
relative to other values promises a higher return according to
definition (8).

In order to promote initial exploration of the state space, the
Q-table is initialized with high Q-values to entice the agent to
visit each state-action pair at least once, a concept know as
optimism in the face of uncertainty. After the UAV’s position
(x0, y0) and the time index t = 0 have been initialized, the
agent makes its first movement decision according to the ε-
greedy policy, where with probability ε ∈ [0, 1] a random
action to explore the state space is taken and in all other
cases the action that maximizes the Q-function. Therefore
a balance must be found between the share of random and
non-random actions which is referred to as the exploration-
exploitation trade-off [16]. The probability for random actions
ε is exponentially decreasing over the learning time.

The agent’s initial movement decision starts the first learn-
ing episode which terminates upon reaching the maximum

flying time T . Each new movement decision is evaluated by
the environment according to the achieved sum rate computed
with the channel model described in II-B and a numerical
reward based on the rate result issued to the agent. The
reward is then used to update the Q-value of the state and
chosen action according to the rule defined in (11). As the
drone is propagated to its new position and the time index
t is incremented, the cycle repeats until the maximum flying
time is reached and the learning episode ends. Random action
probability ε is decreased and drone position and time index
are reset for the start of a new episode. The number of episodes
must be chosen so that sufficient knowledge of environment
and network topology have accumulated through iterative
updates of the Q-table.

B. NN-based Q-learning (Q-net)

Representation of the Q-function by a table is clearly
not practical in large state and actions spaces as table size
increases exponentially. Instead, the Q-function can be repre-
sented by an alternative nonlinear function approximator, such
as a neural network (NN) composed of connected artificial
neurons organized in layers.

A model with two hidden layers, each with a number of
nnodes = 100 neurons, proofed adequate to make a direct
comparison with the standard table-based approach. Choosing
the right architecture and learning parameters is in general
a difficult task and has to be done through heuristics and
extensive simulations. The NN input was chosen to contain
only the minimal information of one state space sample,
feeding current position (xt, yt) of the drone and time index t
into the network denoted Qπθ with NN parameters θ. Four
output nodes directly represent the Q-values of the action
space. The neural network was implemented using Google’s
TensorFlow library.

The basic procedure of the NN Q-learning algorithm is the
same as in the table-based approach described in the previous
section IV-A. However during training, the weights of the
network are iteratively updated based on the reward signal
such that the output Q-values better represent the achieved
reward using the update rule (11). To avoid divergence and
oscillations typically associated with NN-based Q-learning, the
training process makes use of the replay memory and target
network improvements described in [13].

V. SIMULATION

A straight-forward, simulated environment was set up
to evaluate the Q-learning algorithm. The state space
S = {x, y, t} was chosen to contain position of the
drone and time. For simplicity, available actions for the
drone were limited to movement in four directions A =
{′up′,′ right,′ down′,′ left′} within the plane of constant al-
titude H = 20. It follows that there are four Q-values
representing the action space for each position in the grid and
each time index, as is shown in figure 2 exemplarily for one
position and time index.



A. Environment

The simulated environment, as depicted in figure 2, is based
on a 15 by 15 grid world which is populated at initialization
with two static users at ground level and a cuboid obstacle with
height equal to the constant altitude of the drone standing on a
2 by 4 ground plane. The initial and final position of the UAV
are set to the lower left corner (x0, y0) = (xf , yf ) = (0, 0).

The obstacle obstructs the LOS connection between users
and UAV BS in part of the area. The signal strength in
the shadowed part, shown as gray in figure 2, is reduced
by a fixed factor of βshadow = 0.01. After initialization
of the environment and placement of users and obstacle,
a shadowing map for the whole area is computed utilizing
ray tracing, which is then used as a lookup table during
the learning process. In addition, random samples at each
new time index from a Rayleigh distributed random variable
XRayleigh modeling small-scale fading are used to compute
the current information rate for each user according to the
channel model equations (3) and (5). The resulting sum rate
forms the basis of the reward signal.

B. Learning Parameters

The main component of the reward signal is the achieved
sum rate between users and BS. An additional negative reward
is added if the action chosen by the agent leads the UAV to
step outside the 15 by 15 grid. The third component can be
added by a safety check that activates when the UAV fails to
make the decision to return to the landing position before the
maximum flying time T = 50 is reached. The safety system
then activates and forces the UAV to return while awarding a
negative reward for each necessary activation of the system.

Except when the safety system is activated, movement
decisions are made based on the ε-greedy policy described
in IV-A. The probability for random actions ε is exponen-
tially decreasing over the learning time with decay constant
λaction = 14 for NN and table-based approach alike.

No explicit rules exist to choose the learning parameters and
the parameters for the update rule (11) in general, which is
why they have to be found through a combination of heuristics
and search on the parameter space. For the table-based approx-
imation, a combination of constant learning rate αtable = 0.3
and number of learning episodes ntable = 800, 000 was
selected. As the goal in our scenario independent of approach
is to maximize the sum rate over the whole flying time, the
discount factor was set to γ = 0.99 to make the agent focus
on long-term reward for both approaches.

The learning rate in the update rule (11) for the NN-based
approach is set to αnn = 1. Instead, the learning speed
during NN training is controlled with the gradient descent
step size, which is exponentially decayed with decay constant
λgradient = 5 over the whole training time from a value
of 0.005 to 0.00005. A number of nnn = 27, 000 learning
episodes proved sufficient for the training of the NN.

VI. RESULTS

The final learned trajectory by the table-based approach is
depicted in figure 2 while the development of the resulting
sum rate per episode during learning is shown in figure 3 for
both approaches. It is important to note that the number of
episodes in figure 3 is clipped due to the fact that the table-
based solution only converged after n = 800, 000 episodes in
comparison to n = 27, 000 for Q-net. The NN approximator
therefore shows a much higher training data efficiency, mainly
due to the fact that training data can be reused in the NN
training. The sum rate shows a high increase in the respective
first third of the learning phase when the rough layout of
the trajectory is learned. Exploration slows down in the later
phases of the learning process, which means that only details
in the trajectory change and the absolute impact on the sum
rate is consequently small.

The final trajectory shows that the agent is able to infer
information about network topology and environment from
the reward signal. Both approaches, the table-based and NN
approximators, converge to a trajectory with the same charac-
teristics. Specifically, the agent’s behavior shows that it learned
the following:
• The UAV reaches the maximum cumulative rate point

between the two users on a short and efficient path.
• It avoids flying through the shadowed area keeping the

sum rate high during the whole flying time.
• While the action space does not allow for hovering on one

position, the drone learns to circle around the maximum
cumulative rate point.

• The agent decides to return to its landing position in time
to avoid crashing and on an efficient trajectory.

In this simple environment, both approaches are able to
find efficient trajectories in reasonable computation time. This
changes for larger state spaces. Evaluating both approaches
in a 30 by 30 grid environment with four randomly placed
users and obstacles each showed that table-based learning is
not able to find a trajectory outperforming random movement
decisions within a realistic computation time. In the same
environment, Q-net converges to a high sum rate trajectory
within nNN = 30, 000 training episodes and a computation
time of about one hour on a basic office computer.

VII. DISCUSSION

A. Summary

We have introduced a novel Q-learning system to directly
make movement decisions for a UAV BS serving multiple
users. The UAV acts as an autonomous agent in the envi-
ronment to learn the trajectory that maximizes the sum rate
of the transmission over the whole flying time without the
need for explicit information about the environment. We have
formulated a maximization problem for the sum rate, which
we solved iteratively by approximating the Q-function. Our
simulation has shown that the agent is able to learn the
network topology and infer information about the environment
to find a trajectory that maximizes the sum rate and which lets



the UAV autonomously return to its landing spot within the
flying time limit. Comparing table-based and neural network
approximators for the Q-function showed that using a table is
not feasible for large state spaces, but training a NN provides
the necessary scalability and proved to be more efficient using
less training data then table-based Q-learning.

Fig. 2. The final trajectory for the table-based approach after completed
episode ntable = 800, 000 depicted in the simulation environment with two
users and one obstacle. The gray area is in the shadow of the obstacle. As a
visualization for the table, the four Q-values, one for each action, are shown
for the start position (0, 0). At time index t = 0, the Q-value for action ’up’
was learned to promise the highest future return.

Fig. 3. Sum information rate between UAV BS and users per episode over
learning time comparing table-based and NN approximators of the Q-function.
The plot only shows a clipped range of learning episodes as the table-based
solution converges after ntable = 800, 000 episodes, whereas Q-net only
needs nNN = 27, 000 episodes to come to a similar solution.

B. Limitations and Future Work

The relatively high number of learning episodes to obtain
the described results shows a limitation in choosing a Q-
learning approach in comparison to methods in previous
works. This is a consequence of the generality of Q-learning
and the avoidance to make any assumptions about the environ-
ment contained within the approach. Integrating even a coarse
model of the environment with an alternative model-based RL
method would result in faster convergence, but also entail a
loss in learning universality. The long learning time is put
into perspective by the fact that the main training can be com-
pleted offline based on the prior distribution before a shorter
adaptation phase to the true setting. Future work will include
considerations about dynamically changing environments, as
well as a more detailed look at real-world constraints such as
the energy efficiency of the learned trajectory.
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